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Fluvial Architecture of the

Lower Cretaceous Lakota Formation,

Southwestern Flank of the

Black Hills Uplift, South Dakota

By David J. Dahlstrom! and James E. Fox2

Abstract

In the southern Black Hills, South Dakota, the Lakota
Formation consists of four distinctive fluvial units. Three of
these units, identified as fluvial units 1, 3, and 4, crop out in
the study area. Fluvial unit 2 crops out east of the study
area.

Fluvial systems are made up of distinctive architectural
elements enclosed by second-order surfaces. Fluvial unit 1
formed as a resuit of meander construction by a high-sinuos-
ity, single-channel stream. At its base is a massive to cross-
bedded sandstone sequence, including erosional scours and
lenses of intraformational conglomerate, that formed in the
deepest part of the channel under high-energy conditions.
This sequence is overlain by lateral accretion elements con-
sisting of laminated sandstone deposited as low-amplitude
bedforms overlain by rippled sandstone. These lateral accre-
tion elements are the dominant feature of fluvial unit 1.

Depositional elements of fluvial unit 3 are much thin-
ner and more limited in areal extent than the sheetlike sand-
stones of fluvial unit 1 or the tabular, elongate sandstones of
fluvial unit 4. Sandstones of fluvial unit 3 are very poorly
sorted, have numerous erosional scours, and have cyclically
interbedded lower- and upper-flow-regime structures that
indicate ephemeral flow. Multiple topographic levels devel-
oped in this depositional system.

Tabular planar crossbeds dominate fluvial unit 4. Many
of the sandwaves that gave rise to these crossbeds migrated
over larger bars (macroforms). Fluvial unit 4 is composed
primarily of lateral and bilateral accretion elements in trans-
verse profile and foreset macroforms in longitudinal profile.
Bar-top deposit elements that formed on semiemergent mac-

Barr Engineering Co., Minneapolis, Minnesota.
2South Dakota School of Mines and Technology, Rapid City, South
Dakota, and U.S. Geological Survey, Rapid City, South Dakota.

roforms and sandy bedform elements from both deep
(restricted) and shallow channels indicate multiple topo-
graphic levels. This fluvial unit formed in a rapidly aggrad-
ing, low-sinuosity, multiple-channel system.

INTRODUCTION

Large-scale depositional units referred to as architec-
tural elements by Miall (1985a, b) were interpreted from
outcrops of three distinct fluvial sandstone units of the
Lakota Formation in the southwestern Black Hills area of
Custer and Fall River Counties, South Dakota (fig. 1). These
fluvial deposits formed near the end of an episode of conti-
nental deposition that began when the Jurassic Sundance sea
regressed from the region and ended when the Early Creta-
ceous Skull Creek sea encroached from the north in Albian
time. This depositional phase is represented by the Upper
Jurassic Morrison Formation and Lower Cretaceous Lakota
Formation and its regional equivalents (fig. 2). A transgres-
sive disconformity of regional extent marks the contact
between the Lakota and the overlying marginal-marine Fall
River Formation (Waage, 1959; Haun and Barlow, 1962).
Together, these two formations comprise the Inyan Kara
Group. The Lakota is well exposed on the southern and
southwestern flanks of the Black Hills uplift, where it is at
its maximum regional thickness of about 500 ft (150.4 m).
Because of the shallow dip of strata throughout much of this
area, outcrops are as wide as 6 mi (9.6 km).

A light-mineral fraction dominated by rounded chert
and quartz with abraded overgrowths and a heavy-mineral
fraction of primarily rounded zircon and tourmaline sug-
gest a predominantly sedimentary source terrane for the
Lakota (MacKenzie and Ryan, 1962; Chisholm, 1963).

Fluvial Architecture of Lower Cretaceous Lakota Formation s1
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Figure 1.  Index map of 7.5-minute quadrangles mapped by
the U.S. Geological Survey in the study area. Modified from
Gott and others (1974).

Regional paleocurrent trends and the presence of late
Paleozoic fossils within chert pebbles (MacKenzie and
Poole, 1962) suggest that source areas were to the west
and south.

FLUVIAL UNITS IN THE
LAKOTA FORMATION

The Lakota Formation contains diverse lithotypes,
including conglomerate, sandstone, siltstone, fissile to mas-
sive mudstone, coal, and limestone (Dandavati and Fox,
1981). Widespread marker units are rare in this sequence,
and a major mapping effort was required to decipher its
stratigraphy. Thirteen 7.5-minute quadrangles containing
exposures of the Inyan Kara Group were mapped by the U.S.
Geological Survey (fig. 1). The stratigraphic framework of
the Lakota Formation is summarized in figure 3.

General Characteristics

Four informal units of the Lakota Formation, identi-
fied as fluvial units 1-4, have similar characteristics: (1)
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Figure 2. Chart showing stratigraphy of Upper Jurassic and

Lower Cretaceous rocks in the study area. Absolute ages from
Palmer (1983).

each unit is eroded into the underlying rocks; (2) the units
are elongated toward the northwest and have been traced
for 25-60 mi (40-97 km) on outcrop; (3) toward its cen-
ter, each unit consists primarily of sandstone; (4) in cross
section units 1-3 are lenticular and unit 4 is tabular; (5)
toward their edges, units 1-3 are interbedded with finer
grained deposits containing freshwater fossils; and (6)
crossbeds within the units dip predominantly toward the
northwest. Based on these characteristics, the four units
are interpreted to be fluvial in nature and were referred to
as fluvial units 1-4 by Post and Bell (1961). Outcrops of
fluvial units 1-3 were studied for this report; fluvial unit 2
crops out southeast of the study area.

Stratigraphic Relationships
and Characteristics

Fluvial units 1 and 2 are assigned to the Chilson
Member of the Lakota Formation, and fluvial units 3 and
4 are assigned to the Fuson Member. The Chilson Member
is locally overlain by the Minnewaste Limestone Member
of the Lakota in the southern Black Hills area.
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Chilson Member

A basal fissile and carbonaceous shale as thick as
about 100 ft (30.5 m) is overlain by fluvial unit 1, which
thins both east and northwest of its thickest section of 300
ft (91.4 m) on the border between the Flint Hill and Edge-
mont NE quadrangles (fig. 1) (Gott and others, 1974). In
the Edgemont NE quadrangle, the axis of fluvial unit 1
trends northwesterly (Gott and Schnabel, 1963). An
increase in chert content and a decrease in mica content
relative to the more locally derived Upper Jurassic Unk-
papa Sandstone Member of the Morrison Formation sug-
gest increased input from pre-Cretaceous sedimentary
rocks of the Cordilleran region to the west (Gott and oth-
ers, 1974).

In some places, 300400 ft (91.4-121.9 m) of strata,
including fluvial unit 1 and underlying strata, may have
been eroded (Gott and others, 1974) prior to deposition of
fluvial unit 2. As much as 150 ft (45.7 m) of Unkpapa
Sandstone Member has been removed beneath the thickest
section of fluvial unit 2 (400 ft, 121.9 m) in the

southeastern part of the Cascade Springs quadrangle (Post,
1967). In other places fluvial unit 2 truncates and laps
onto fluvial unit 1.

An increase in the abundance of rounded zircon and
tourmaline in fluvial unit 2 indicates increased input from
a western source (MacKenzie and Poole, 1962; Gott and
others, 1974). A period of subaerial exposure and minor
erosion followed deposition of fluvial unit 2.

Minnewaste Limestone Member

The Minnewaste Limestone Member crops out con-
tinuously in the eastem part of the study area (fig. 1) and
discontinuously as far west as the Burdock quadrangle.
The Minnewaste grades from almost pure, lithographic
limestone in its thickest sections (80 ft, 24.3 m) to sandy
limestone and calcareous sandstone at its depositional
pinchout. Removal of about 30 ft (9.1 m) of anhydrite
reported to be present in the subsurface to the east of the
study area may be the cause of brecciation common on

Fluvial Architecture of Lower Cretaceous Lakota Formation s3



outcrop (Gott and others, 1974). The Minnewaste inter-
tongues with mudstones of the overlying Fuson Member
(Gott and Schnabel, 1963). Freshwater sponge spicules
recovered from this unit suggest a lacustrine origin
(Schnabel, 1963).

Fuson Member

Three mappable units have been identified within
the Fuson Member: fluvial unit 3, a variegated mudstone
and sandstone, and fluvial unit 4.

Sandstone bodies within fluvial unit 3 have a maxi-
mum thickness of 120 ft (36.6 m) (Gott and others, 1974)
and exhibit a range of textures from conglomeratic to fine
grained. The sandstone is coarsest where incision is great-
est. The thick, coarse strata trend north-northwest (Brobst,
1961). Strata of fluvial units 3 and 4 are interbedded with
the variegated mudstone, and in places fluvial unit 3 con-
tains thin interbeds of mudstone (Braddock, 1963). Rela-
tively abundant chert and silicified limestone in fluvial
unit 3 suggests continued input from a western source area
(Gott and others, 1974).

The variegated mudstone unit, which is interbedded
with fluvial unit 3, is the most widespread informal unit of
the Lakota Formation and has probable equivalents around
the entire periphery of the Black Hills (Gott and others,
1974). This floodplain mudstone is commonly gray but is
mottled red, green, or brown; it lacks carbonaceous mate-
rial, and it is slightly calcareous, containing minor concre-
tionary horizons and limestone beds (Braddock, 1963).
Freshwater fossils have been identified from calcareous
rocks in the lower part of this unit (Bell and Post, 1971;
Sohn, 1979). It has a maximum thickness of 180 ft (54.9
m) and an average thickness of 100 ft (30.5 m).

Locally developed within the variegated mudstone is
a white, structureless, highly argillaceous, silty sandstone
containing exotic pebbles. This sandstone has a maximum
thickness of 100 ft (30.5 m) in a northwest-bearing lens in
the Edgemont NE quadrangle (Gott and Schnabel, 1963).

Fluvial unit 4 overlies the variegated mudstone
unit and, in places, has incised into underlying strata. It
crops out continuously for approximately 35 mi (56.4
km), from the Flint Hill quadrangle to the Dewey quad-
rangle (see fig. 1). In the Burdock, Jewel Cave SW, and
Dewey quadrangles, fluvial unit 4 occupies a north-
west-trending belt 0.5-1 mi (0.8-1.6 km) wide. This unit
has a maximum thickness of 165 ft (50.3 m) in the Flint
Hill quadrangle and thins in its downstream direction to
a maximum thickness of 70 ft (21.3 m) in the Jewel
Cave SW quadrangle (Braddock, 1963). Abrupt lateral
truncation of this sandstone body and abundance of large
slump blocks at the base of fluvial unit 4 in the Edge-
mont quadrangle suggest that relief on the walls of the
paleovalley in which fluvial unit 4 was deposited was
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great (Ryan, 1964). The mineral assemblage of fluvial
unit 4 indicates input from both western and eastern
source areas (Gott and others, 1974).

METHODS

Concepts and Definitions of
Architectural Elements

Allen (1983) established a hierarchy for surfaces or
boundaries within bedded sandstones using terms of
McKee and Weir (1953) for stratification types.
Zeroth-order surfaces bound individual strata or
cross-strata within a set. First-order surfaces form the
boundaries of individual sets. Second-order surfaces bound
groups of genetically related stratified and (or) cross-strati-
fied units (cosets or composite sets). This genetic relation-
ship is established by consistent paleocurrent trends within
similar lithofacies. Third-order surfaces bound groups of
cosets, or composite sets of a larger scale, deposited by
the overall channel system. Boundaries of these units are
depositional and (or) erosional surfaces.

The scale of architectural elements may vary from
the smallest scale, flow-regime bedforms, to the largest
scale, macroforms, which approach the scale of the chan-
nel itself. A complete heirarchy of depositional features
may coexist in a single fluvial system (Jackson, 1975).
Lateral, vertical, and forward accretion of the macroform
is commonly accomplished by migration of superimposed
smaller bedforms (Allen, 1983; Friend, 1983; Haszeldine,
1983; Kirk, 1983). In this study the most diagnostic and
useful units identified in the outcrop were those elements
or packages of strata enclosed by second-order surfaces.
The depositional processes that gave rise to the element
are inferred from interpretation of internal geometry, litho-
facies, and relationship with surrounding elements.

For example, figure 44 shows an element exposed
in longitudinal section. This element is entirely enclosed
within second-order surfaces. The first-order surfaces
within this element descend stratigraphically in the down-
stream direction and terminate against the basal surface.
The bedforms that resulted in the coset of planar crossbeds
apparently migrated down the lee of a macroform (fig.
4B). The geometry of the set and coset boundaries
describe the outline of the macroform.

This element is defined as the foreset macroform
(Miall (1985a, b). Just as the foreset macroform is related
to a specific fluvial process, Miall described seven other
architectural elements related to seven distinct fluvial pro-
cesses. Miall contended that all fluvial deposits can be
divided into varying proportions of these eight
process-controlled genetic elements.
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Figure 20.

Block diagram and cross sections showing depositional model for fluvial unit 4. Macroforms shown on block dia-

gram: 1, semiemergent bar; 2, erosional scour adjacent to large bar; 3, totally submerged, forward and laterally accreting bar; 4,
deep channel. Lithofacies and elements shown in cross sections: BD, bar-top deposit; Bi-LA, bilateral accretion deposit; CH,
channelized element; Fp, fine-grained parting; Sp, planar crossbedded sandstone; St, trough crossbedded sandstone; FM, foreset

“macroform; SB, sandy bedform deposits.

source area uplift. Incision prior to deposition of fluvial unit
3 was the most significant Lakota erosional event. Profiles
2 and 3 represent a minor high-energy, ephemeral tributary
within the fluvial unit 3 system.

Valley gradients were also high during deposition of
“fluvial unit 4. On the basis of exposures in the Edgemont
NE quadrangle in which fluvial unit 4 truncates the thickest
section of the Fuson massive sandstone unit, the configura-
tion of the local topography is assumed to have remained
unchanged. Fluvial unit 4 represents a low-sinuosity system
that had multiple, mobile channels. A paucity of fine-grained
material within the valley fill and the resulting lack of cohe-
siveness favored this channel behavior. Aggradation rates
were high, and multistoried sandstone bodies formed.
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